
Systems of IVP’s
y′(t) = f(t, y), t ∈ [a, b], y(a) = α (IVP)

If we interpret y, α and f as

y : [a, b] → Rn, α ∈ Rn, and f : [a, b]× Rn → Rn,

then (IVP) represents a system of IVP’s. Remarkably, all of the methods that we
have investigated continue to work in this more general setting. If the computer
language supports vector operations, then the code can be identical; if not, then
statements like

w(j+1) = w(j) + h*ϕ(t,w(j))

need to be replaced by a loop

for i=1:n, w(i,j+1) = w(i,j) + h*Φ(t,w(i,j)); end.

For adaptive methods, quantities like |wj+1 − w∗
j+1| will need to be replaced by

∥wj+1 − w∗
j+1∥ for some vector norm ∥ · ∥. This means that adaptive methods will

take a timestep that is safe for the all the components of the solution vector, and
thus the most oscillatory component determines the timestep.

The simplest system of IVP’s is linear, homogeneous and time-invariant, like

y′(t) = Ay(t), t ∈ [a, b], y(a) = α,

where A ∈ Rn×n is a constant matrix. We can write down the analytic solution to
this problem in terms of eigenvalues and eigenvectors of A (or the matrix eAt), but
for nearly all other systems, we will need our numerical methods.

Many systems of IVP’s come from higher order scalar equations and partial
differential equations. We will talk here about higher order scalar equations.
Consider the very general IVP

y(m)(t) = f(t, y, y′, y′′, . . . , y(m−1)), t ∈ [a, b], y(k)(a) = αk, k = 0, 1, . . . ,m−1.

By defining the new variables

u1(t) = y(t), u2(t) = y′(t), . . . , um(t) = y(m−1)(t)

the mth order system above becomes the m×m first order system

u′(t) = F (t,u), t ∈ [a, b], u(a) = α, where

F (t,u) =


u2(t)
u3(t)
...

um(t)
f(t,u)

 .

The ability of our methods to “solve” systems of first order IVP’s combined with
the ability to transform higher order IVP’s to first order systems means the
methods we have been studying are very general IVP solvers.


