Adaptive Single-Step Methods
y(t)=[f(ty), telat], yla)=a  (IVP)

How do we choose the step size, h, for an IVP solver? Typically we want h as large
as possible but small enough to give sufficient accuracy. A simple and fairly safe
(but not very efficient) approach is to guess an h and solve the problem two times:
using step sizes of h and h/2, respectively. If the difference between the two
simulations is small enough (on the coarser grid), then keep the finer simulation,
otherwise go to h/4, etc.

If this sounds familiar, good. This is what the adaptive quadrature method did. But
it did it automatically, and locally. The efficiency comes from the local adaptability,
and the automatic step size decision is based on a computable error estimate. One
construction of adaptive single-step methods is to compute an error estimate by
taking a time step with an single-step method, say ¢*, with Lt.e. 7% = O(h*), and a
step with another single-step method, say ¢, with L.t.e. 7= O(h*!), giving

wiy =w;+he"(t,wy) and  wip = wy + ho(ly, wy).
The difference between these estimates guides a step size decision, as we discuss:

As usual, pretend that w; = y(t;). Then h7t = y(t;41) — wjy1 = O(h¥2),
ht* = y(tjs1) —wjy, = O(R¥*1), and

htt = y(tjs1) — w;—H
= Yjt1 — Wit + Wi — Wi,
= Wj+1 — U);-(Jrl + ht '
= Wi — wjy + O(RF?)

This gives our computable error approximation 7* ~ (w;;1 — wj,,)/h.

Let’s use this to compute a new step size gh. We will write 7 = 7(¢gh). Assuming h
is small enough, there is a constant ¢* such that 7*(h) ~ ¢*h*. Then

7 (qh) ~ c*(qh)* = ¢*c*h* ~ ¢*7*(h). If we have an error tolerance e, then using our
approximation above and solving |7*(gh)| < € for ¢ gives

he 1/k
(ot )"
w1 — wj+1|

If ¢ > 1, then our estimate is saying that the step size could be bigger, so we would
keep w;41 and (possibly) increase the step size for the next step. If ¢ < 1, then our
estimate says that the step size should be smaller, so we throw out w;;; and w7, ,
and do this step all over again with a new, smaller step size (< gh).



