Comparing Reals vs. Comparing Floats

When programming with floats, we know that the assignment statement
\[m = x \]
isn’t to be interpreted as an equation, but as
find a place in memory we will call \(m \), and store \(x \) there.

Some languages use other symbols, like ‘:=’ or ‘<-' (instead of ‘=’) to make it clear that this is assignment, not an equation. But sometimes we want “equals” as in “equation”, and programming languages need such a mechanism. For example, in the Matlab language
\[m == 1 \]
returns TRUE if (the value in) \(m \) is 1, and FALSE otherwise.

So how are we to test the real variable equation \(x = y \) in floating point? The short answer is: we cannot! We first have to represent \(x \) and \(y \) as floats, say \(fx = \text{fl}(x) \) and \(fy = \text{fl}(y) \).

If \(x \) and \(y \) are in the floating point range, then the test
\[fx == fy \]
will return TRUE iff their floating point representations are the same. What we are testing is whether or not there exists \(dx \) and \(dy \), with \(|dx|, |dy| \leq \mu \), for which \(x(1 + dx) = y(1 + dy) \) is a float. This implies \(|x - y| \leq \mu(|x| + |y|) \). But the converse doesn’t hold: for example, if \(x \in \mathbb{R} \) is exactly halfway between 2 neighboring floats, then for any \(\epsilon > 0 \), \(\text{fl}(x - \epsilon) \) and \(\text{fl}(x + \epsilon) \) are different floats. For example, there are \(x, y \in \mathbb{R} \) that do not overflow, which differ by \(10^{290} \) for which \(\text{fl}(x) == \text{fl}(y) \) is TRUE (exponential spacing), and there are those that differ by \(10^{-290} \) and return FALSE (binning). To test \(x == y \) in this case, I very rarely use anything more stringent than \(|fx - fy| \leq 2\mu \ast \max\{|fx|, |fy|\} \).

If \(fx \) and \(fy \) both underflow, the situation is different. We cannot give a relative bound like above, and subnormals make the situation complicated to talk about: The number \text{realmin} \ is the smallest positive normalized float, and in Matlab \text{realmin} \ is about \(10^{-308} \). The floating point statement
\[fx == 0 \]
is testing \(\text{fl}(x) \) against \(\pm 0 \), and depends on whether or not subnormals are used: if underflow is set to zero, then \(|x| < \text{realmin} \) means \(fx \) is set to \(\pm 0 \), while if subnormals are in effect, then \(|x| < \mu \ast \text{realmin} \) means \(fx \) is set to \(\pm 0 \). [Subnormals are the denormalized floats \(fx \), with \(|fx| \in [\mu \ast \text{realmin}, \text{realmin}] \); Matlab uses subnormals.]

Now the equations \(x = 0 \) and \(1 + x = 1 \) are equivalent over \(\mathbb{R} \); they have the same solution set: \{0\}. But the real numbers \(x \) for which
\[fx == 0 \]
is TRUE live in the interval \((-\text{realmin}, \text{realmin}) \), while those for which
\[1 + fx == 1 \]
is TRUE are the real interval \((-\mu, \mu) \). Since \((-\text{realmin}, \text{realmin}) \subset (-\mu, \mu) \), we can say
\[fx == 0 \implies 1 + fx == 1 \quad \text{but} \quad 1 + fx == 1 \nRightarrow fx == 0. \]

There are many floats for which \(1 + fx == 1 \) is TRUE, but \(fx == 0 \) is FALSE. No normalized floats satisfy \(fx == 0 \), but (in double precision) almost 0.4 percent of all floats satisfy \(1 + fx == 1 \). Another way of saying this (in double precision) is that about \(7 \times 10^{16} \) of the about \(2 \times 10^{19} \) floats are \(|\text{less than}| \mu \). How we test for “small” depends on why we are testing. Whether to use a relative measure, like \(\mu \), or an absolute, like \text{realmin}, is a problem-dependent – but fundamental – decision.