
Function Evaluation

In scientific computing we routinely evaluate functions from spaces over real (or
complex) numbers into real (or complex) spaces. We write

f : D → R

to say that f is a function with domain D and range R (each element of D is
associated (through f) to exactly one element of R (as in f(d) = r)). You can think
of D and R as subsets of the real numbers, but often they are finite dimensional
vector spaces over real (or complex) numbers.

We are using a finite model of the reals (the floating point numbers) to approximate
the domain and range spaces, so when we use the term “evaluate f at x”, we really
mean “evaluate f at our approximation of x”, which will give us an approximation
to f evaluated at our approximation to x.

Some notation might help here. Let’s say we’d like to evaluate f at x, that is, we’d
like to compute y = f(x). If x̄ is our approximation of x ∈ D, then (like-it-or-not)
we are actually trying to compute ỹ = f(x̄). But because of rounding errors in this
function evaluation, we instead compute ȳ as our approximation to ỹ. Our attempt
to compute y = f(x) returns instead ȳ = f̄(x̄), and we hope that ȳ ≈ ỹ ≈ y.

In summary:
y = f(x) is what we want, but we have x̄ instead of x,
ỹ = f(x̄), is what we try to compute, but is subject to rounding errors, and
ȳ = f̄(x̄) is what we have actually computed.

Attempting to predict or discover how much ȳ and y might differ is a rather difficult
question in general, and is an important part of numerical analysis. One way to
simplify the question is to imagine we can compute ỹ: When we speak of “the magic
method” we imagine a method which returns the ȳ that is the closest element of our
model of R to ỹ. This is the best we might do, and is a useful concept to keep in
mind in any analysis of computing with real numbers. We’ll see that how good (or
poorly) the magic method performs is a measure of how difficult our problem is
(condition numbers...).

Think about just how good an approximation the magic method might give for
various functions (e.g. y = f(x) = 1/x, y = f(x) = sin (x), y = f(A, b) = A−1b,
etc.), or how you might evaluate f(x) using only arithmetic operations, or how you
might approximate the error y − ȳ.

You may think that “evaluate f at x” is a trivial task, but if you think about trying
to solve any problem (which has a unique solution), then you come to see that this is
exactly what we are trying to do: the solution is f(input data), for some function f
which maps the input data to the solution. At the risk of getting too philosophical, I
also remind you that this function that we are trying to evaluate is probably only an
approximation of some (more complicated, or unknown, or unknowable) function.


