
Composite Newton-Cotes

Recall that the Newton-Cotes rules were based on Lagrange interpolation, and that high
degree polynomial interpolation on uniform grids can generate wildly oscillating
interpolants. This problem for the Newton-Cotes rules leads us naturally to the most
often used rules for fixed data (e.g. equally spaced) quadrature.

Observe that for any c ∈ [a, b] for which f is defined,∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx,

so we can construct rules over [a, b] by piecing-together rules over subintervals of [a, b].
For example, the trapezoidal rule applied twice over [a, b] gives∫ b

a
f(x)dx ≈

a+b
2

−a

2
(f(a) + f(a+b

2
)) +

b−a+b
2

2
(f(a+b

2
+ f(b))

= h
2
(f(a) + 2f(a+b

2
) + f(b)).

On n+1 nodes and with h = (b− a)/n, the composite trapezoidal rule is∫ b

a

f(x)dx =
h

2
[f(x0) + 2

n−1∑
i=1

f(xi) + f(xn)] − b− a

12
h2f ′′(µ1),

and (taking n even) the (very popular) composite Simpson’s rule is∫ b

a

f(x)dx =
h

3
[f(x0) + 2

n/2−1∑
i=1

f(x2i) + 4

n/2∑
i=1

f(x2i−1) + f(xn)] − b− a

180
h4f (4)(µ2).

Hopefully you are wondering whether numerical integration is as illcondioned as
numerical differentiation. Let’s look at the composite Simpson’s rule. As before we will
model the rounding errors associated with the evaluation of f and the evaluation of the
quadrature rule using e(x) in f(x) = f(x) + e(x). We compute

I ≡ h

3
[f(x0) +

n/2∑
i=1

f(x2i) + 4

n/2∑
i=1

f(x2i−1) + f(xn)].

This gives∫ b

a

f(x)dx = I +
h

3
[e(x0)+2

n/2∑
i=1

e(x2i)+4

n/2∑
i=1

e(x2i−1)+ e(xn)] − b− a

180
h4f (4)(µ2),

where the 2nd and 3rd terms are the rounding and truncation error terms, respectively.
The 2nd term is actually a quadrature rule for

∫ b

a
e(x)dx, so we expect it to be small

(why?), making the following a very pessimistic analysis. If |e(x)| ≤ Mr on [a, b], then

|
∫ b

a
f(x)dx− I| = h

3
[e(x0) + 2

∑n/2
i=1 e(x2i) + 4

∑n/2
i=1 e(x2i−1) + e(xn)] − b−a

180
h4f (4)(µ2)

≤ hnMr − b−a
180

h4f (4)(µ2)

= (b− a)Mr − b−a
180

h4f (4)(µ2).

In numerical differentiation, the error was unbounded as h → 0. This time, as h → 0,
even this pessimistic error bound goes to (b− a)Mr, where (as before) Mr depends on
the machine precision and the conditioning of “evaluate f at the nodes”. Remarkably, if
f ′ is bounded, the central limit theorem suggests that the total error behaves as
µ O(

√
h) as h → 0.

