
Bisection

If f is continuous on [a, b], and f(a)f(b) < 0, then the intermediate value theorem
guarantees that there is at least one x∗ ∈ (a, b) for which f(x∗) = 0. If you had to
approximate such an x∗, what point would you use? That is, knowing only that
x∗ ∈ [a, b], what value x minimizes the maximum possible error |x∗ − x|? It’s the
midpoint p = a + (b− a)/2 which satisfies this minimax property.

If f(a)f(p) < 0, then there must be a root of f in (a, p), otherwise there must be
one in (p, b). This observation is the basis for the method of bisection. Let a0 = a
and b0 = b be such that f(a0)f(b0) < 0. For a given ai and bi, define
p = ai + (bi−ai)/2. If f(p) = 0 we are done; if not, define ai+1 and bi+1 by

if f(a)f(p) < 0
ai+1 = ai, bi+1 = p

else
ai+1 = p, bi+1 = bi

end

The new interval is half as big as the previous, and it contains a root of f . This
process defines a sequence of intervals [ai, bi] of length bi − ai = (b− a)/2i, each of
which contains a root of f . If x∗ is a root of f in [ai, bi], then p = ai + (bi−ai)/2
satisfies

|x∗ − p| ≤ (b− a)/2i+1.

It is rare for an algorithm to provide a bound on the error (as bisection does), and
this is one of its most appealing properties. The error bound is strictly monotone
decreasing, guaranteeing that for any tolerance τ > 0, the absolute error will satisfy
|x∗ − p| ≤ τ after at most

N = dlog2

(
b−a
τ

)
e

steps. This certainty comes at the price of (i) requiring, a priori, an interval [a, b]
for which f(a)f(b) < 0, and (ii) slowness. Since we haven’t seen other methods yet,
it may not be clear that this method is slow, but you can see that the algorithm is
terribly near-sighted: the only information about f(x) that is used is its sign.

The floating point implentation of bisection is relatively simple. The accuracy of the
computed value of f(p) is rather less important here than in other methods, because
here the quantity sign(f(p)) is all that is needed, which is always well conditioned
away from f(p) = 0. When it is difficult to determine sign(f(p)) it is safe to say
(up to rounding errors in the evaluation of f) that p is a root. We do find that we
risk underflow in the evaluation of f(a)f(p), and thus a careful implementation
would use sign(f(a))sign(f(p)) instead. Of course we should remember to save our
latest value of sign(f(a)), so we do not need to recompute it in the next iteration.
Another consideration is the evaluation of the midpoint of [a, b], which, in floating
point should be evaluated as a + (b− a)/2 rather than (a + b)/2 (Why?).

