Rate of Convergence

The sequences \(w_n = 1/\log_2(n) \), \(x_n = 1/n \), \(y_n = 1/n^2 \), and \(z_n = 1/2^n \) all converge to 0. How fast? Well, \(w_8 = 1/3 \), \(x_8 = 1/8 \), \(y_8 = 1/64 \), and \(z_8 = 1/256 \) is true, but doesn’t really convey how slow \(w_n \to 0 \), or how fast \(z_n \to 0 \). We use functions like these, and more generally \(1/n^p \) and \(1/e^n \) as yardsticks (or benchmarks) with which to compare the speed of convergence of algorithms.

In our context, we are usually trying to compute better and better approximations \(p_n \) to some value \(p \), and we want to know how fast the error \(e_n = |p - p_n| \) is converging toward 0. It is nice to be able to say \(p_n \to p \) (our approximations will eventually be close to the answer), but will it take a second or a week? In the example above \(w_{512} > 10^{-1} \), but \(z_{30} < 10^{-9} \).

We will use these standard sequences above as benchmarks. If a sequence converges about as slow as the \(w_n \), we will say it has a logarithmic rate of convergence, but if it goes fast like \(z_n \), we will say its rate of convergence is exponential.

Here is the formal definition. Think of \(\beta_n \) as one of the sequences given above. If \(\{\beta_n\} \) is a positive sequence converging to 0, then we say that \(p_n \to p \) with rate of convergence \(\beta_n \) if \(\exists N \) and \(k > 0 \) such that \(\forall n > N, \)

\[
|p_n - p| \leq k\beta_n.
\]

In this case we write \(p = p_n + O(\beta_n) \).

Now suppose \(p_7 \approx p \). What does that mean? What about \(p_{18} \)? Well, if we can write \(p_n = p + O(1/n^3) \), then we know that \(p_n \to p \) at least as fast as \(k/n^3 \to 0 \), for some constant \(k \), and it is probably safe to say that \(p_{18} \) is about \((18/7)^3 \approx 17 \) times more accurate than is \(p_7 \).

In the same way that we have just measured the error in a discrete setting, we can measure the error associated with a continuous parameter. Suppose \(\lim_{x \to 0} f(x) = L \). How fast? We say that \(f(h) \to L \) as \(h \to 0 \) with rate of convergence \(h^q \) if \(\exists \delta \) and \(k > 0 \) such that \(\forall |h| \leq \delta, \)

\[
|f(h) - L| \leq kh^q.
\]

We write \(f(h) = L + O(h^q) \). The idea here is that we are approximating \(L \) by \(f(h) \), and we would like to compare \(|f(h) - L| \) to \(h^q \), because we have a feeling for how fast \(h^q \to 0 \).

For example, \(\lim_{x \to 0} \sin(x) = 0 \). So for small \(x \), \(\sin(x) \approx 0 \). But we can do better:

\[
\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots,
\]

so we can write \(\sin(x) = 0 + O(x) \), or to give more information \(\sin(x) = x + O(x^3) \), or even more: \(\sin(x) = x - x^3/6 + O(x^5) \), etc.