Test 2

Name: _____

- (30) 1. Let $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$ be real ordered pairs with $x_i \neq x_j$ for $i \neq j$, and $x_i \in [a, b]$.
 - (a) Give the formulae for the Lagrange basis functions and the Lagrange interpolating polynomial P for this data.

(b) Give the truncation error term for the Lagrange interpolator for this data, assuming that $y_i = f(x_i)$ for a sufficiently smooth function f. Include as much information as possible about any parameters given in your answer.

(c) Let $P_L(x)$ be the Lagrange interpolator from part (a) above. If a polynomial of degree n-1 also interpolates this data, what can be said about the degree of P_L ?

(d) Let $P_H(x)$ be the Hermite interpolator for these knots, where also y'_i is given at each of the nodes. What is the (maximum possible) degree of P_H ?

- (15) 2. Let $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$ be real ordered pairs with $x_0 < x_1 < \dots < x_n$.
 - (a) Describe the cubic spline interpolator, S(x), for this data and define the conditions it must satisfy.

(b) Are boundary conditions necessary? Explain.

(c) At which points in (x_0, x_n) might S'''(x) be undefined?

(8) 3. Let f(1) = 0, f(3) = 3 and f(4) = 2. Approximate f(2) using a degree 2 Lagrange interpolator.

(8) 4. Let f(0.5) = 2, f(1) = 1, and f(1.5) = 1. Approximate f'(1) using the 3-pt. centered difference formula.

(9) 5. Write down any difference formula for f'(x) (with its error term), and using that formula describe why numerical differentiation is difficult.

(30) 6. Numerical Integration

(a) Approximate $\int_0^1 x^4 dx$ using Simpson's rule. You do not need to simplify your result.

(b) Describe an adaptive quadrature method in as much detail as you can.

(c) Briefly describe *composite* Newton-Cotes quadrature and explain why this *can* achieve high accuracy.

(d) When is Monte-Carlo integration most often used? Why?