Math 4363 – Numerical Analysis

Test 2

Name: _____

(20) 1. Let
$$S(x) = \begin{cases} 1+2x^2+x^3, & x \in [1,2) \\ 25-36x+bx^2-2x^3, & x \in [2,3] \\ \text{be a cubic spline function.} \end{cases}$$

- (a) Find b.
- (b) Find S(1.5).
- (c) Is S a *natural spline* on this interval? Explain.
- (10) 2. Suppose we have a function f that we would like to approximate. We have data for f at 5 nodes. At node j we know all of the derivatives of f through the m_j^{th} , where $m_0 = 2, m_1 = 1, m_2 = 3, m_3 = 2$, and $m_4 = 2$. We can expect to interpolate f and its derivatives at these points with an osculating polynomial of degree less than or equal to d. What is d?
- (10) 3. Suppose f is a sufficiently smooth function and x_0, x_1, \ldots, x_n are distinct.
 - (a) Define an osculating polynomial for f on the nodes.
 - (b) Define the Lagrange interpolating poly. in terms of the osculating polynomial.
 - (c) Define the Hermite interpolating polynomial in terms of the osculating polynomial.
- (15) 4. Let $P_L(x)$ be the Lagrange polynomial for f on $x_0, \ldots, x_n \in [a, b]$.
 - (a) What is the error in approximating f(x) by $P_L(x)$ for $x \in [a, b]$?
 - (b) What can be said about a polynomial, P, which has the same degree as P_L , and which also interpolates f on x_0, \ldots, x_n ?
 - (c) Let $L_{n,k}(x)$ be a Lagrange basis function for this data. What is $L_{n,k}(x_j)$?

(20) 5. Let
$$x_0 = 1$$
, $x_1 = 2$ and $x_2 = 3$ and $f(x_0) = 1$, $f(x_1) = 2$ and $f(x_2) = 4$.

- (a) Set up the normal equations for the least squares line for this data.
- (b) Approximate f(1.5) with a degree 2 Lagrange polynomial.
- (10) 6. State the Weierstrass approximation theorem.
- (15) 7. Let (x_0, y_0) , (x_1, y_0) , ..., (x_n, y_n) be points in the *xy*-plane, with the x_j pairwise distinct. Discuss the similarities and differences between the interpolating polynomial, the cublic spline, and the least squares approximating polynomial for these data.