(25) 1. Finite precision arithmetic.
(a) Let $a=0.0079346$ and $b=42.0963$. Compute the 3 (decimal) digit rounding representations of a and b, call them \bar{a} and \bar{b} respectively.
i. $\bar{a}=$
ii. $\bar{b}=$
iii. What is the relative error in \bar{a} ?
(b) Describe the machine epsilon?
(c) What do we mean by overflow?
(d) What is cancellation?
(e) What is 17.4267 in base 5 ? (just kidding)

What can you say about s if $\mathrm{fl}(s+1,000,000)=1,000,000$?
(10) 2. Let $P(x)=4 x^{3}-x^{2}+2 x+3$.
(a) Use Horner's method to find $P(2)$.
(b) What is the remainder when P is divided by $(x-2)$?
(5) 3. Briefly describe Mueller's method.
(5) 4. How would you suggest finding all of the roots of a polynomial of degree $n>8$?
5. Let $f(x)=x^{2}-5$. We're looking for a zero of f.
(a) Use the bisection method with $a=2$ and $b=3$ to find an interval of length strictly less than $1 / 4$ which brackets a zero of f.
(b) Use one iteration of Newton's method to improve the guess $x_{0}=2$.
(c) Starting with $x_{0}=2$ and $x_{1}=2.2$, use one iteration of the secant method to find x_{2}.
(d) Define the order of convergence of a sequence.
(e) What is the order of convergence for bisection and the secant methods?
6. Let $f(x)=x^{2} e^{x}$.
(a) State the Taylor polynomial theorem in its general form.
(b) Compute $P_{2}(x)$, the degree 2 Taylor polynomial for f at $x_{0}=0$.
(c) Use P_{2} to approximate $f(0.25)$.
(d) What is the remainder term associated with P_{2} at $x=0.25$?

