Fall nnnn

(25) 1. Finite precision arithmetic.

- (a) Let a = 0.0079346 and b = 42.0963. Compute the 3 (decimal) digit rounding representations of a and b, call them \bar{a} and \bar{b} respectively.
 - i. $\bar{a} =$
 - ii. $\bar{b} =$
 - iii. What is the relative error in \bar{a} ?
- (b) Describe the machine epsilon?
- (c) What do we mean by overflow?
- (d) What is cancellation?
- (e) What is 17.4267 in base 5? (just kidding) What can you say about s if fl(s + 1,000,000) = 1,000,000?

(10) 2. Let
$$P(x) = 4x^3 - x^2 + 2x + 3$$
.

(a) Use Horner's method to find P(2).

(b) What is the remainder when P is divided by (x - 2)?

(5) 3. Briefly describe Mueller's method.

(5) 4. How would you suggest finding all of the roots of a polynomial of degree n > 8?

- (35) 5. Let $f(x) = x^2 5$. We're looking for a zero of f.
 - (a) Use the bisection method with a = 2 and b = 3 to find an interval of length strictly less than 1/4 which brackets a zero of f.

(b) Use one iteration of Newton's method to improve the guess $x_0 = 2$.

(c) Starting with $x_0 = 2$ and $x_1 = 2.2$, use one iteration of the secant method to find x_2 .

- (d) Define the order of convergence of a sequence.
- (e) What is the order of convergence for bisection and the secant methods?

(20) 6. Let $f(x) = x^2 e^x$.

(a) State the Taylor polynomial theorem in its general form.

(b) Compute $P_2(x)$, the degree 2 Taylor polynomial for f at $x_0 = 0$.

(c) Use P_2 to approximate f(0.25).

(d) What is the remainder term associated with P_2 at x = 0.25?