Name: _____

- (30) 1. Let $f(x) = x^2 + 2x 3$. We're looking for a zero of f.
 - (a) Use the bisection method with a=0 and b=6 to find an interval of length strictly less than 3 which brackets a zero of f.

(b) Use one iteration of Newton's method to improve the guess $p_0 = 2$ (that is, find p_1).

(c) With $p_0 = 3$ and $p_1 = 2$, use one iteration of the secant method to find p_2 .

(d) Compare and contrast properties related to performance and generality of bisection, Newton's method and the secant method.

(5)	2.	Describe the stabilized deflation method for finding all of the roots of a polynomial of degree n .
(25)	3.	Finite precision floating point arithmetic.
		(a) Let $a=0.0047927$ and $b=240.56$. Compute the 3 decimal-digit rounding representations of a and b , call them \bar{a} and \bar{b} respectively. i. $\bar{a}=$
		ii. $ar{b}=$
		(b) Describe the machine epsilon in terms of the spacing between neighboring floats.
		(c) What do we mean by overflow?
		(d) What is digit cancellation?

- (8) 4. Let $f(x) = \frac{1}{1-x}$.
 - (a) Compute $P_1(x)$, the degree 1 Taylor polynomial for f at $x_0 = 0$.

- (b) Use P_1 to approximate f(0.1).
- (8) 5. How many multiplications are required to evaluate an arbitrary real polynomial of degree n at a real number? Explain.

(8) 6. Show that if x, y and xy are real numbers in the range of our floating point system, then

$$\frac{|xy - \mathrm{fl}(xy)|}{|xy|} \le 3\mu + \mathrm{O}(\mu^2)$$

.

(10)	7.	Conditioning (a) What does <i>illconditioning</i> mean in a mathematical problem?
		(b) What is the absolute condition number for the problem "find x^* so that $f(x^*) = 0$ "?
(6)	8.	State the fundamental axiom of floating point arithmetic.