Name: _____

- (30) 1. Let $f(x) = x^2 + x 2$. We're looking for a zero of f.
 - (a) Use the bisection method with a = -6 and b = 0 to find an interval of length strictly less than 3 which brackets a zero of f.

(b) Use one iteration of Newton's method to improve the guess $x_0 = -4$.

(c) With $x_0 = -4$ and $x_1 = -3$, use one iteration of the secant method to find x_2 .

(d) Compare and contrast bisection, Newton's method and the secant method. Include in your discussion properties related to performance and generality.

(5)	2.	Describe a popular method for finding all of the roots of a polynomial.
(25)	3.	Finite precision arithmetic.
		(a) Let $a=0.00047964$ and $b=24.046$. Compute the 3 (decimal) digit rounding representations of a and b , call them \bar{a} and \bar{b} respectively. i. $\bar{a}=$
		ii. $ar{b}=$
		i. What do we mean by swamping?
		ii. What do we mean by overflow?
		iii. What is digit cancellation?

- (8) 4. Let $f(x) = \frac{1}{1+x}$.
 - (a) Compute $P_1(x)$, the degree 1 Taylor polynomial for f at $x_0 = 0$.

- (b) Use P_1 to approximate f(0.1).
- (c) Use the remainder term to give an upper bound on the error.

(6) 5. How many multiplications are required to evaluate a real polynomial of degree n at a real number? Explain.

(6) 6. Show that if x, y and xy are real numbers in the range of our floating point system, then

$$\frac{|xy - f(xy)|}{|xy|} \le 3\mu + O(\mu^2)$$

.

(15)	7.	Conditioning
		(a) What does <i>illconditioning</i> mean in a computational problem?
		(b) What is the absolute condition number for the problem "find x so that $f(x) = 0$ "?
		(b) What is the absolute condition number for the problem. That x so that $f(x) = 0$.
		(c) Define backward stability in your own words.
(5)	8.	State the floating point representation theorem?