Name: _____

(32) 1. Let $f(x) = x^2 - 5x + 4$. We're looking for a zero of f.

(a) Use the bisection method with a = 3 and b = 11 to find an interval of length strictly less than 3 which brackets a zero of f.

(b) Use one iteration of Newton's method to improve the guess $p_0 = 3$ (that is, find p_1).

(c) With $p_0 = 3$ and $p_1 = 5$, use one iteration of the secant method to find p_2 .

(d) What is the order of convergence, per function evaluation (α_f) , of bisection, Newton's, and the secant methods, respectively?

(5) 2. Suppose you have used the secant method or Newton's method to generate the approximations x_0, x_1 and x_2 to a zero of a function f. Describe how to generate an improved estimate, say x_3 , using Müller's method.

(10) 3. Let $f(x) = \frac{1}{1+x}$.

(a) Compute $P_1(x)$, the degree 1 Taylor polynomial for f at $x_0 = 0$.

(b) Use P_1 to approximate f(0.1).

- (33) 4. Finite precision floating point arithmetic.
 - (a) Let a = 0.0047927 and b = 199.6477. Compute the 3 decimal-digit (rounding) representations of a and b, call them \bar{a} and \bar{b} respectively.
 - i. $\bar{a} =$
 - ii. $\bar{b} =$
 - (b) Suppose we have a floating point system with minnfloat = m, unit roundoff $= \mu$, and where underflow is set to 0.
 - i. Suppose x and y are floats and fl(x + y) = x. Give an upper bound on |y|.

- ii. Now suppose x can be any real number.
 - A. Describe the solution set of the equation f(x) = 0.
 - B. Describe the solution set of the equation fl(1 + x) = 1.
- (6) 5. How many multiplications are required to evaluate an arbitrary real polynomial of degree n at a real number? Explain.

(6) 6. Let p be a polynomial of degree n, and suppose you have a method which can compute 1 root of any polynomial. Carefully describe a stabilized (or corrected) delfation process for approximating all of the roots of p.

- (8) 7. Conditioning
 - (a) What is the absolute condition number for the problem "find x^* so that $f(x^*) = 0$ "?
 - (b) When computing the zeros of $p(x) = ax^2 + bx + c$, does $b^2 \approx 4ac$ indicate well-conditioned or ill-conditioned zeros? Explain.