Fall nnnn

- (20) 1. Finite precision arithmetic.
 - (a) Let a = 0.0094332 and b = 53.1961. Compute the 2 (decimal) digit rounding representations of a and b, call them \bar{a} and \bar{b} respectively.
 - i. $\bar{a} =$
 - ii. $\bar{b} =$
 - (b) What do we mean by underflow?
 - (c) What is cancellation?

(10) 2. Let x and y be real numbers (not necessarily floats) such that none of x, y nor xy underflow nor overflow. Derive an upper bound on the relative error in computing the floating point product of x and y.

- (30) 3. Let $f(x) = x^2 5$. We're looking for a zero of f.
 - (a) Use the bisection method with a = 2 and b = 3 to find an interval of length strictly less than 1/2 which brackets a zero of f.

(b) Use one iteration of Newton's method to improve the guess $x_0 = 2$.

(c) Starting with $x_0 = 2$ and $x_1 = 2.5$, use one iteration of the secant method to find x_2 .

- (d) Define the order of convergence of a sequence.
- (e) What is the order of convergence for bisection and the secant methods?

(10) 4. State the Taylor polynomial theorem in its general form.

(10) 5. When is the result of a computation considered *backward stable*?

(10) 6. When is a problem considered *ill-conditioned*?

(10) 7. Briefly describe a method for factoring polynomials of degree n > 5.